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Theory of segmented circular electrodes for electrodiffusion measurements is developed in the 
diffusion layer approximation. A fast subroutine is given for handling the data supplied by 
three-segment circular electrode. 

Determination of the absolute values of velocity gradients or corresponding shear 
stresses at a wall by using the electrodiffusion limiting current technique1 ,2 belongs 
to well-developed standard experimental methods. On the contrary, the electro
diffusion measurement of instantaneous flow direction2 - 4 presented rather difficult 
task till this time. To master this task, the following three stages have to be solved: 

a) manufacture of a multi-segment electrode, 

b) reliable calibration method for determining the directional characteristic, 

c) fast transformation of the primary multiple current signal to the information 
on the flow direction. 

In the recent patentS, an improved technology is described of manufacturing 
multi-segment circular electrodes. The technology is applicable for the series produc
tion of electrodiffusion probes sensitive to direction of the flow. The calibration 
experiments6 with a prototype three-segment electrode have shown its high direc
tional sensitivity as well as the independency of the directional characteristic on the 
flow rate. 

In the present work, the theory is given of electrochemically induced convective 
diffusion to a segmented circular electrode in a unidirectional velocity field with 
a constant velocity gradient. The special case of an electrode composed of three 
identical radial segments is considered in details, including an algorithm for deci
phering of the multiple current data. 

THEORETICAL 

Primary quantity in any electrodiffusion diagnostics of flow is the limiting current1 •2 • 

For a given concentration field c of a species consumed by an electrode reaction, 
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2170 Wein. Sobolik: 

i.e. depolarizer, the limiting current iA is given as the surface integral of the local 
current densities J over the electrode surface A: 

(1) 

where the local density J is expressed by the Faraday law, 

J = nFDIVcl. (2) 

In a distance from the electrode surface, Z = 00, the depolarizer concentration 
is constant and equal to that in the fresh solution, c = Co' Immediately at the elec
trode surface, Z = 0, (x, y) E A, the concentration is negligible small, c = 0, due to 
depletion of the depolarizer by a fast electrode reaction under the condition oflimiting 
diffusion currents1. 

For the kinematics of flow shown in Fig. 1, Vy = 0, Vz = 0, Vx = qz, the equation 
of steady convective diffusion, 

(3) 

can be reduced to the following form: 

(4) 

The longitudinal coordinate x is oriented paralelly to the flow direction and has the 
origin, x = 0, at the forward edge of the electrode. The normal coordinate z is 
oriented perpendicularly to and has the origin, z = 0, in the electrode surface. The 
transversal coordinate y is orthogonal to both x and z, and has arbitrary location 
of the origin. 

The longitudinal and transversal diffusion terms, Da;xc and Da;yc have a per
ceivable effect only under the condition of extremally low Peelet number 7, qL2 / D < 
103, where L = min (Lx, Ly). The relevant boundary-value problem becomes sub
stantially simpler if both the longitudinal and transversal diffusion terms are ne
glected in the transport equation (4). The resulting parabolic problem with the local 
boundary conditions 

c = Co: for z = 00 or x = 0, (5) 

c = 0: for z = 0 and x > 0 , 

can be solved by introducing the well-known similarity transformation, c(z, x, y) = 
= coC(w), w = z(9Dx/qt 1/3, with the following result: 
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(6) 

The corresponding surface field of the local current densities can be written as fol
lows: 

J = KX- 1 / 3 , (7) 

where 

(8) 

It should be noticed that the longitudinal distance x of a surface point is measured 
from the forward edge of the electrode along the corresponding streamline. 

The same expression for the local current density J is valid for any part S of the 
ideally polarized electrode A, which will be called the segment S. Under the condition 
of the unidirectional shear flow, the streamlines are both straight and parallel so 
that the general expression (1) can be written in the following explicite form for any 
segment S c: A: 

If f)ll fXI()I) 
is = K X- 1/ 3 dA = K dy X- 1/ 3 dy = 

S YO xo(y) 

see also Fig. 2. 

~ ........ 

vx= q.z 

........ .. 

FIG. 1 

Circular electrode for shear rate measure
ments 
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Current through a Radial Segment 

Geometry of any radial segment of a given circular electrode is unambiguously 
specified by a single parameter, e.g. the half-angle a, see Fig. 3. The orientation of 
the segment relative to the flow direction can be specified e.g. by the angle t. How
ever, it is advantageous to introduce the alternate pair of geometric parameters, 

b i = I - a, b2 = t + a, (lO) 

for computation of the current is through the segment. The constraint 0 < b2 -

- b i < 2n expresses the obvious fact that the condition 0 < a < n should hold 
for any real segment. 

The total current through a circular electrode A, i.e. for b2 = b i + 2n, is given 
by the following well-known formula 1 - 3: 

The ratio Is = is/iA. for a radial segment depends only on angles (b t , b2 ) or (t, a): 

Is = H(b 1 , b2 ) = H(t - a, t + a) . (12) 

Eight different subdomains of the arguments (b l , b2 ) of the function H should be 

FIG. 3 

Circular electrode with radial segment 

1 2 3 

5 6 7 8 

FIG. 4 

Eight possible configurations of single radial 
segment 
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distinguished in actual computations of R-values by means of the general formula 
(9). The individual cases are shown in Fig. 4. The computations can be simplified 
considerably by using the following functional rules: 

R(b, b + 2n) = 1 , 

R(b l , b) + R(b, b2 ) = R(b!> b2 ), 

R(2n - b2 ,2n - bl ) = R(b!> b2 ) , 

(13) 

which follow from the obvious properties of the set function Is = I(S), SeA. 
These rules make possible to express the function R of two independent arguments 
(bi> b2 ) through another function F* of a single argument: 

F*(b) = R(O, b); 0 < b < n. (14) 

The corresponding composite rules, which are listed in Table I, can be unified 
to the following single expression for R: 

(15) 

The function F of the single argument, b E ( - 00; + 00), represents an extension 
of the original function F*, as defined by the following symmetry rules: 

o < b < n: F(b) = F*(b) , 

n < b < 2n: F(b) = 1 - F*(2n - b), 

TABLE I 

Rules for computation of H(b l , b2 ) on eight different sub domains 

CaseQ Condition~b 

1 -1t < b l < 0 < b2 < 1t 
2 0 < b l < 0 < b2 < 1t 
3 0 < b l < 1t < b2 < 21t 
4 1t < b l < b2 < 21t 
5 -21t < b l < -1t < b 2 < 0 
6 -21t<b l <O<b2 <1t 
7 -1t < b l < 0 < b2 < 1t 
8 -1t<b l <O<1t<b1 

Representation of H(b l , b2 ) 

F*(b 2 ) -+- F*(-b l ) 

P*(h 2 ) - F*(b l ) 

1 - F*(21t - b2 ) - F*(b l ) 

- F*(21t -~ b z) + F*(21t - b I) 

J - F*(-b1 )- F*(:::1t+ bl ) 

I + F*(b 2 ) - F*(21t -+- b l ) 

F*( - b l ) + F*(b 2 } 

J + F*~21t - b2 } + F*( -bl) 

Q See also Fig. 4; b the condition b2 - b l < 21t is implicitely assumed. 
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-1t < b < 0: F(b) = -F*( -b), 

-21t < b < -1t: F(b) = -1 + F*(21t + b), 

- 00 < b < + 00: F( b) = F( 41t + b) . (16) 

The function F*(b) was determined by numerical integration. Two subcases have 
been considered which correspond to b < 1tj2 and 1tj2 < b, respectively, see Fig. 5. 
From obvious geometrical consideration, the following two expressions hold for 
the lengths of streamlines crossing the segment territory: 

o < y < Ys 

ys<y<R, 
(17) 

where Ys = R sin band xo(Y) = 0 for any convex segment, b < 1t. The starting 
expression for is, 

b < 1tj2 

(18) 
b > 1tj2, 

(J.6 

R 

~g~~§~z~~hrY' Y 'a 

1- 0·4 

~!2tl~o2 
b I R Yo_ 1:,:::..--------1O---c-.o-s-t----' 

FlO. 5 FlO. 6 

Integration schema for two basic kinds of 
radial segments, b < n/2 and n/2 < b 

Directional characteristics for single radial 
segments. Numerical labels give a-values in 
the 360°-scale 
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can be converted by some manipulations to the following analytic formula for 
F(b) = Is: 

where 

{ 

S f1 - [w - Ct]2/3 dt· b < 1t/2 P , 
F(b) = 0 

1 S 1 2 - P t([2W]2/3 - [w - Ct]2/3 )dt; b > 1t/2, 

S = sin b, C = cos b, w = (1 - S2t2)1/2, 

P = 25/3 I [1 - t2 ]1/3 dt = 2·670984369 . 

Directional Characteristics of Individual Segments 

(19) 

(20) 

For a given radial segment S, specified by the radius R and half-angle a, the de
pendence of the normalized current Is on the segment orientation t (or the flow 
direction - t) is expressed by the function 

I,,(t) = H(t - a, t + a) . (21) 

For several values of the half-angle a, this function is shown in Fig. 6. The argument 
cos (t) is used there instead of t to demonstrate that the functions I,,(t) can be re
presented well by the simple empirical formulas I,,(t) = Bo(a) + B1(a) cos (t). More 
exactly, the Fourier series of the functions I,,(t): 

00 

I,,(t) = Bo(a) + L Bm(a) cos (mt). (22) 
m=1 

will undoubtly converge very fast. The numerical realisation of the corresponding 
Fourier coefficients, 

1 I" Bo(a) = - I,,(t) dt, 
1t 0 

(23) 

2 S" Bm(a) = - I,,(t) cos (mt) dt, 
1t 0 

(24) 

resulted in the following simple expressions: 

(25) 
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which certainly have an exact analytical background. The numerical values of Cm 

are given in Table II. The reduced approximate formula 

laCt) = ajrt + 0·126 sin a cos t + 0·007 sin 2a cos 2t (26) 

guarantees the accuracy better than ±0'005 over the whole region of the parameters 
(a, t). 

RESULTS AND DISCUSSION 

Directional Characteristic of Three-Segment Circular Electrode 

In the present paragraph, the current signal is considered of a circular electrode 
which consists of three mutually isolated, but equally polarized and geometrically 
identical radial segments, j = 1, 2, 3. The directional characteristic of such a multiple 
electrode system is presented by 'a triplet of functions lit) expressing the current
-direction dependencies of the individual segments, see Fig. 7. The definition of the 
t-variable is common for all the segments. For the case under consideration, the 
functions lit) can be expressed in the following way: 

lit) = laCt - to - 2rtjj3) , (27) 

where the to-value depends on the optional setting the zero direction for the electrode 
as a whole. 

If the individual characteristics can be represented by formulas like Eq. (26), 
then the entire characteristic of a real three-segment electrode is represented by the 
matrix Bjm , m = 0, ... , 4, of the Fourier coefficients for individual segments: 

TABLE II 

IJ(t) = Bjo + Bjt sin t + Bj2 cos t + 
+ Bj3 sin 2t + Bj4 cos 2t . 

(28) 

Universal coefficients of directional characteristics represented by the Fourier series 

m Cm m Cm 

1 +0'12613828 5 + 0'00050387 
2 +0'00701656 6 +0'00015206 
3 - 0'00302874 7 -0'00015117 
4 -0'00064083 
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The shifts of the axes of individual segments, j = 1, ... ,3, cause the appearance 
of sin-terms in these expressions. 

How to Treat Signals from Real Three-Segment Electrode 

Normalized current signal is represented by a triplet of the values [I;], j = 1, ... , 3. 
Obviously, the corresponding information is redundant in certain sense, because 
only a single value - the direction angle t - should be determined by solving the 
system of three nonlinear equations 

lit) - I; = 0; j = 1,2,3 , (29) 

with the additional constraints 

(30) 

Common ways of treating such non-linear systems8 result in rather slow computa
tional processes which are unsuitable for on-line treating of large sets of primary 
current data. 

Fortunately, there exists an extremally effective way for solving the system of 
Eqs (29) and (30) in the case under consideration. It is based on the fact that the 
conditions 

k 

FlO. 7 

t[u,1) 

t[/,1] t[/,2) 

2 

(31) 

3 4 5 6 k 

t[u,2) f[u,3] f[u,4) f[u,5] f[u,6) 

t[l,3) t[/,4) f[l,5) t[l,!?l 

Directional characteristic of the circular electrode for the ideal case of three equal segments 
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can be fulfilled for only one permutation [p, q, r] of the indexes j = 1, 2, 3. Ob
viously, the six sectors, k = 1, ... ,6, exist on the interval 0 < t < 21t, which are 
uniquely assigned to the corresponding permutations [p, q, r], see Fig. 7, In the 
k-th sector, two pairs of values, {t[l, k], 1[1, k]} and {t[ u, k], I[ u, k ]}, give the angle 
and current coordinates of the bounding points, laying on Iq(t), 

1[1, k] = lit[l, k]), I[ u, k] = litE u, k]) . (32) 

H ere, the index q = qk and the functions I l t), j = l, 2, 3, are assumed to be known 
for the k-th sector. Having the proper sector identified and q = qk known, the 
single equation 

(33) 

should be solved for determining the t-value. Even the linear approximation of the 
function lit) inside the k-th sector, 

Iq(t) = 1[1, k] + (/[u, k] _ 1[/, k]) [t - tEl, k] 
t u, k] - tEl, k] 

(34) 

guarantees an acceptable accuracy (±2°) of the determination of the angle t. The 
PASCAL version of the algorithm described above is given in the Appendix. 

On a computer Commodore PC-lO equipped by the 8087 arithmetic coprocessor, 
the array of 300 triplets [It, Ii, Ij] can be converted to the corresponding t-values 
in less than a second. The computational process is slowed down no more then 
twice if the regula-falsi algorithm for the exact determination of t is included into 
the FAST ANGLE function. In on-line arrangement, the use of this function allows 
to attain sampling frequency about 200 Hz. 

The presented approach neglects unsteady phenomena within the diffusion layer. 
However, such approach seems to be acceptable in most hydrodynamic measurements 
because the inertia of commonly used electrodes1 •2 is negligible even under turbulent 
flow regimes. The problems of correcting the current-time electrodiffusion data 
on the inertia effects9 are out of the scope of the present work. 

The authors are grateful to the Alexander von Humboldt Foundation, Bonn (F.R.G.) for the 
liberal donation of the computer (Commodore PC-lO). 

LIST OF SYMBOLS 

half-angle of radial segment, see Fig. 3 
surface of area of electrode 
Fourier coefficients for j-th segment 
Fourier coefficients for ideal single segment 
auxiliary angle parameters, see Eq. (2) 

CollectIon Czechoslovak Chern. Commun. [Vol. 521 [1987) 



Electrodiffusion Measurement of Velocity Gradients 

em 
c, Co 
D 
nF 
F,F*,H 

i A' is 
I 
I,.(t) 
I}t) 

It 
1[1, k]. I[u, k] 
J 
K 
Lx, Ly 

N 
[Po q, r] 

[Pk' qk' I'd 
q 
R 
S 
I 

1[/, k], I[U, k] 

Xl 

y. 
Y 

REFERENCES 

universal constants to the problem 
depolarizer concentration and its bulk value 
coefficient of diffusion 
Faraday constant with stechiometric coefficient 
functions defined by Eqs (13), (15), (11) 
currents through the surfaces A, S 
currents normalized by total current, I = iii A 

directional characteristic for single segment 
j-th component of directional characteristic for multi-segment electrode 
actual (measured) values of I/t) 
lower and upper values of I in k-th sector 
local current density 
coefficient defined by Eq. (7) 
longitudinal and transversal dimensions of electrode 

electroinsulating neighbourhood of electrode 
permutation of the indexes 1, 2, 3 
the permutation of the indexes 1, 2, 3 for k-th sector 
wall shear rate, i.e. the absolute value of velocity gradient at wall 
radius of circular electrode 
surface or area of electrode segment 
angle characterizing electrode orientation or flow direction, see Fig. 3 
bounds of k-th sector, see Fig. 7 
lenght of streamline on segment territory, see Fig. 5 
critical point of radial segment, see Fig. 5 
velocity field 

2179 

1. Hanratty T. J., Campbell J. A. in the book: Fluid Mechanics Measurements (R. J. Goldstein, 
Ed.), p. 559. Hemisphere, Washington 1983. 

2. Nakoryakov V. E., Kashinsky O. N., Kozmenko B. K. in the book: Measuring TechniqueJ 
in Gas-Liquid Flows (J. M. Delhaye and G. Cognet, Eds), p. 695. Springer, Heidelberg 1984. 

3. Py B.: lnt. J. Heat Mass Transfer 16, 129 (1973). 
4. Wichterle K., 'zak L.: Czech. AO 231308. 
5. Sobolik V., Mitschka P., Menzel Th.: Czech PV 7278 86. 
6. Menzel Th., Sobolik V., Wein 0., Onken U.: Chem.-Ing.-Tech. 59, 492 (1987) .. 
7. Wein 0., Kovalevskaya N. D.: Collect. Czech. Chem. Commun. 52. 634 (1987). 
8. Kuester J. L., Mize J. H.: Optimization Techniques with FORTRAN. McGraw Hill. Maiden

head 1973. 
9. Sobolik V., Wein 0., Cermak J.: Collect. Czech. Chem. Commun. 52, 913 (1987). 

Translated by the author (O.W.). 

APPENDIX 

The following function FASTANGLE (in PASCAL) can be recomcnded for the fast 
computation of directional angles t from given triplets [II, 12, 13] of normalized 
currents, see Fig. 7 and Eq. (35). 
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function FASTANGLE (11,12,13: real): real; 
var k: integer; 1: real; 
begin 

if 11 < = 12 then if 12 < 13 then begin k: = 1; 1: = 12 end 
else if 11 < 13 then begin k: = 2; 1: = 13 end 

else begin k: = 3; 1: = II end 
else if 13 < 12 then begin k: = 4; 1: = 12 end 
else if 13 < 11 then begin k: = 5; 1: = 13 end 

else begin k: = 6; 1: = II end 

Wein, Sobolik 

FASTANGLE: = t[u, k] + (t[l, k] - t[u, k])* (1 - lEu, k])/(l[l, k] - lEu, k]) 
end; (* of F ASTANGLE*) 

The only necessary calibration data are 1, t coordinates of the points of inter
sections of I = I(t) calibration curves for the individual segments. 
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